search
Search
Map of Data Science
Guest 0reps
exit_to_appLog out
Map of data science
Thanks for the thanks!
close
account_circle
Profile
exit_to_app
Sign out
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview Doc Search Code Search Beta SORRY NOTHING FOUND!
mic
Start speaking... Voice search is only supported in Safari and Chrome.
Shrink
Navigate to
A
A
brightness_medium
share
arrow_backShare Twitter Facebook

# NumPy | matmul Method

NumPy
chevron_right
Documentation
schedule Jul 1, 2022
Last updated
local_offer PythonNumPy
Tags
expand_more
map
Check out the interactive map of data science

Numpy's matmul(~) method is used to perform compute the product of two arrays. These arrays can be vectors, matrices and even higher dimensions.

NOTE

matmul(~) is strikingly similar to Numpy's dot(~) method. The difference is as follows:

• matmul(~) does not support scalar multiplications, while dot(~) does.

• matmul(~) method is preferred over Numpy's dot(~) method when you need to perform matrix multiplication.

# Parameters

1. a | array_like

✜ The first argument.

2. b | array_like

✜ The second argument.

# Return value

The following table succinctly summaries what operation is performed as well as the return type:

a

b

operation

Return type

1D array

1D array

Vector dot product

number

2D array

1D array

Matrix-vector product

1D Numpy array

2D array

2D array

Matrix-matrix multiplication

2D Numpy array

n-D array

n-D array

Batch products

n-D Numpy array

# Examples

## Matrix-vector product

 x = [[1,0], [0,1]]y = [5,5]np.matmul(x,y) array([5, 5]) 

Mathematically, we're doing the following:

$$\begin{pmatrix} 1&0\\ 0&1\\ \end{pmatrix} \begin{pmatrix} 5\\ 5\\ \end{pmatrix}= \begin{pmatrix}5\\ 5\\ \end{pmatrix}$$

## Matrix-matrix product

 x = [[1,0], [0,1]]y = [[2,2], [2,2]]np.matmul(x,y) array([[2, 2], [2, 2]]) 

Mathematically, we're doing the following:

$$\begin{pmatrix} 1&0\\ 0&1\\ \end{pmatrix} \begin{pmatrix} 2&2\\ 2&2\\ \end{pmatrix}= \begin{pmatrix} 2&2\\ 2&2\\ \end{pmatrix}$$

Always remember that parameters just need to be array-like; we can use Numpy arrays as well:

 x = np.array([[1,0], [0,1]])y = np.array([[2,2], [2,2]])np.matmul(x, y) array([[2, 2], [2, 2]]) 

## Batch products

The matmul(~) method can be used to compute multiple products at once, like follows:

 x = [ [[1,0], [0,1]], [[1,1], [1,1]] ]y = [3,4]np.matmul(x,y) array([[3, 4], [7, 7]]) 

In this example, the variable x holds the following two matrices:

$$\begin{pmatrix} 1&0\\ 0&1\\ \end{pmatrix} \;\;\;\; \begin{pmatrix} 1&1\\ 1&1\\ \end{pmatrix}$$

The final line, np.matmul(x,y), is performing the following mathematical operations:

$$\begin{pmatrix} 1&0\\ 0&1\\ \end{pmatrix} \begin{pmatrix} 3\\ 4\\ \end{pmatrix}= \begin{pmatrix} 3\\ 4\\ \end{pmatrix}$$
$$\begin{pmatrix} 1&1\\ 1&1\\ \end{pmatrix} \begin{pmatrix} 3\\ 4\\ \end{pmatrix}= \begin{pmatrix} 7\\ 7\\ \end{pmatrix}$$

Note that batch products also for vector-vector product and matrix-matrix product as wel