NumPy | array method
Start your free 7-days trial now!
Numpy's array(~) method constructs a Numpy array out of the provided object, which is typically a list or a tuple.
Parameters
1. object | array-like objects
Data source used to build a Numpy array. Typically, we use a list or a tuple.
2. dtypelink | string or type | optional
Type of data stored in the Numpy array. By default, type will be inferred.
3. ndminlink | int | optional
The minimum number of dimensions the Numpy array will have.
Return value
A Numpy array with the data-type as specified.
Examples
Creating Numpy array using list
np.array([1,2,3])
array([1, 2, 3])
The inferred type of the data is int.
Creating Numpy array using tuple
np.array((1,2,3))
array([1, 2, 3])
Creating Numpy array with explicit type
np.array((1,2,3), float)np.array((1,2,3), "float")
array([1., 2., 3.])
Notice how we have 1. instead of just 1 - this means that the data in the Numpy array is of type float instead of int. You can also provide the dtype in string form, like "float".
Creating 2D Numpy array
np.array([[1, 2, 3], [4, 5, 6]])
array([[1, 2, 3], [4, 5, 6]])
Creating 2D Numpy array using ndmin
np.array([1, 2], ndmin=2)
array([[1, 2]])
Here, normally we would have a 1D Numpy array, but since we specified ndmin=2, we get a 2D Numpy array instead.