Pandas
keyboard_arrow_down 655 guides
chevron_leftData Manipulation Cookbook
Adding a prefix to column valuesAdding leading zeros to strings of a columnAdding new column using listsAdding padding to a column of stringsBit-wise ORChanging column type to stringConditionally updating values of a DataFrameConverting all object-typed columns to categorical typeConverting column type to dateConverting column type to floatConverting column type to integerConverting K and M to numerical formConverting string categories or labels to numeric valuesEncoding categorical variablesExpanding lists vertically in a DataFrameExpanding strings vertically in a DataFrameExtracting numbers from columnFilling missing value in Index of DataFrameFiltering column values using boolean masksLogical AND operationMaking DataFrame string column lowercaseMapping True and False to 1 and 0 respectivelyMapping values of a DataFrame using a dictionaryModifying a single value in a DataFrameRemoving characters from columnsRemoving comma from column valuesRemoving first n characters from column valuesRemoving last n characters from column valuesRemoving leading substringRemoving trailing substringReplacing infinities with another value in DataFrameReplacing values in a DataFrameRounding valuesSorting categorical columnsUsing previous row to create new columns
check_circle
Mark as learned thumb_up
9
thumb_down
1
chat_bubble_outline
0
Comment auto_stories Bi-column layout
settings
Converting string categories or labels to numeric values in Pandas
schedule Aug 12, 2023
Last updated local_offer
Tags Python●Pandas
tocTable of Contents
expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Start your free 7-days trial now!
Example
Consider the following DataFrame:
import pandas as pd
df
name class0 alex a1 bob b2 cathy c3 doge a
Solution
To create a new column class_int
that encodes the labels with numeric integers:
df['class_int'] = pd.Categorical(df['class']).codesdf
name class class_int0 alex a 01 bob b 12 cathy c 23 doge a 0
Explanation
Here, we are first converting the class column to Categorical type:
pd.Categorical(df['class'])
['a', 'b', 'c', 'a']Categories (3, object): ['a', 'b', 'c']
Under the hood, pd.Categorical
assigns numeric values starting from 0 to each unique label. These encoded numeric values can be accessed using the codes
property:
pd.Categorical(df['class']).codes
array([0, 1, 2, 0], dtype=int8)
Supplementary information
Converting numeric value back to string label
To convert numeric values back to string label, use the categories
property:
int_label = 1pd.Categorical(df['class']).categories[int_label]
'b'
Here, categories
returns an Index holding unique string categories:
pd.Categorical(df['class']).categories
Index(['a', 'b', 'c'], dtype='object')
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
9
thumb_down
1
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!