search
Search
Map of Data Science
Guest 0reps
exit_to_appLog out
Map of data science
Thanks for the thanks!
close
account_circle
Profile
exit_to_app
Sign out
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview Doc Search Code Search Beta SORRY NOTHING FOUND!
mic
Start speaking... Voice search is only supported in Safari and Chrome.
Shrink
Navigate to
A
A
brightness_medium
share
arrow_backShare Twitter Facebook

# Converting K and M to numerical form in Pandas DataFrame

Pandas
chevron_right
Cookbooks
chevron_right
DataFrame Cookbooks
chevron_right
Data Manipulation Cookbook
schedule Jul 1, 2022
Last updated
local_offer PythonPandas
Tags
expand_more
map
Check out the interactive map of data science

Consider the following DataFrame:

``` df = pd.DataFrame({"A":["20K","2.5K","30M","3.5M","500"]})df A0 20K1 2.5K2 30M3 3.5M4 500 ```

Here, column `A` is of type string.

# Solution

To convert `"K"` (thousand) and `"M"` (million) to numerical form:

``` df["A"].replace({"K":"*1e3", "M":"*1e6"}, regex=True).map(pd.eval).astype(int) 0 200001 25002 300000003 35000004 500Name: A, dtype: int64 ```

# Explanation

We first use the `replace(~)` method to replace `K` and `M` with `*1e3` and `*1e6`, respectively:

``` df["A"].replace({"K":"*1e3", "M":"*1e6"}, regex=True) 0 20*1e31 2.5*1e32 30*1e63 3.5*1e64 500Name: A, dtype: object ```

Note the following:

• `regex=True` is needed if we want the key string to be replaced by value string (e.g. `K` replaced by `"*1e3"` in this case)

• `1e3` is the scientific notation of `1000`.

Next, we mathematically evaluate each value using `map(pd.eval)`:

``` df["A"].replace({"K":"*1e3", "M":"*1e6"}, regex=True).map(pd.eval) 0 20000.01 2500.02 30000000.03 3500000.04 500.0Name: A, dtype: float64 ```

Here, the Series' `map(~)` method applies the `pd.eval(~)` method to each of the values.

Finally, we convert all the values into integer using `astype(int)`:

``` df["A"].replace({"K":"*1e3", "M":"*1e6"}, regex=True).map(pd.eval).astype(int) 0 200001 25002 300000003 35000004 500Name: A, dtype: int64 ```