PySpark DataFrame | fillna method
Start your free 7-days trial now!
PySpark DataFrame's fillna(~) method replaces null values with your specified value. We can also pick the columns to perform the fill.
Parameters
1. value | int or float or string or boolean or dict
The value to fill the null values with. For dict, the key will be the column labels and the value will be the fill value for that column. If dict is passed, then subset is ignored.
2. subset | string or tuple or list | optional
The columns to consider for filling. By default, all columns that are of the same type as value will be considered.
Return Value
A PySpark DataFrame (pyspark.sql.dataframe.DataFrame).
Examples
Consider the following PySpark DataFrame:
df = spark.createDataFrame([["Alex", 25, None], [None, 30, 200], ["Cathy", None, 100]], ["name", "age", "salary"])
+-----+----+------+| name| age|salary|+-----+----+------+| Alex| 25| null|| null| 30| 200||Cathy|null| 100|+-----+----+------+
Filling missing values in entire PySpark DataFrame
To fill all missing values with 50:
+-----+---+------+| name|age|salary|+-----+---+------+| Alex| 25| 50|| null| 30| 200||Cathy| 50| 100|+-----+---+------+
Here, notice how the null value is intact in the name column. This is because we passed in 50 for the value argument, which is a number type. However, the column name is a string type, and because of the mismatch in the data types, the null value was not filled for name column.
Filling missing values with different values for different columns
To fill the null values in age with 50, and those in salary in 300:
+-----+---+------+| name|age|salary|+-----+---+------+| Alex| 25| 300|| null| 30| 200||Cathy| 50| 100|+-----+---+------+
Filling missing values with the same value for different columns
To fill null values for the age and salary columns with 50:
+-----+---+------+| name|age|salary|+-----+---+------+| Alex| 25| 50|| null| 30| 200||Cathy| 50| 100|+-----+---+------+
Filling missing values using values of another column
Unfortunately, the fillna(-) method does not allow for imputing missing values with values of another column.
Consider the following PySpark DataFrame:
df = spark.createDataFrame([["Alex", 25, None], [None, 30, 200], ["Cathy", None, 100]], ["name", "age", "salary"])
+-----+----+------+| name| age|salary|+-----+----+------+| Alex| 25| null|| null| 30| 200||Cathy|null| 100|+-----+----+------+
To impute missing values in age with values in salary, we can use PySpark's when(-) method:
+-----+---+------+| name|age|salary|+-----+---+------+| Alex| 25| null|| null| 30| 200||Cathy|100| 100|+-----+---+------+