search
Search
Join our weekly DS/ML newsletter layers DS/ML Guides
menu
menu search toc more_vert
Robocat
Guest 0reps
Thanks for the thanks!
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
help Ask a question
Share on Twitter
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
A
A
brightness_medium
share
arrow_backShare
Twitter
Facebook

PySpark DataFrame | collect method

Machine Learning
chevron_right
PySpark
chevron_right
Documentation
chevron_right
PySpark DataFrame
schedule Jul 1, 2022
Last updated
local_offer PySpark
Tags

PySpark DataFrame's collect() method returns all the records of the DataFrame as a list of Row objects.

Return Value

A list of Row objects.

Examples

Consider the following PySpark DataFrame:

df = spark.createDataFrame([["Alex", 25], ["Bob", 30]], ["name", "age"])
df.show()
+----+---+
|name|age|
+----+---+
|Alex| 25|
| Bob| 30|
+----+---+

Getting all rows of the PySpark DataFrame as a list of Row objects

To get all the rows as a list of Row objects:

df.collect()
[Row(name='Alex', age=25), Row(name='Bob', age=30)]
WARNING

Under the hood, the collect(~) method sends all the data scattered across the worker nodes to the main deriver node. This means that if the size of the data is large, then the driver program will run out of memory and throw an error.

mail
Join our newsletter for updates on new DS/ML comprehensive guides (spam-free)
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_down
1
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!