search
Search
Map of Data Science
Guest 0reps
exit_to_appLog out
Map of data science
Thanks for the thanks!
close
account_circle
Profile
exit_to_app
Sign out
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview Doc Search Code Search Beta SORRY NOTHING FOUND!
mic
Start speaking... Voice search is only supported in Safari and Chrome.
Shrink
Navigate to
A
A
brightness_medium
share
arrow_backShare Twitter Facebook

# Getting rows with missing values (NaNs) in certain columns in Pandas DataFrame

Pandas
chevron_right
Cookbooks
chevron_right
DataFrame Cookbooks
chevron_right
Handling Missing Values
schedule Jul 1, 2022
Last updated
local_offer PythonPandas
Tags
map
Check out the interactive map of data science

# Example

Consider the following DataFrame:

``` df = pd.DataFrame({"A":[np.nan,3,np.nan],"B":[4,5,6],"C":[np.nan,7,8]}, index=["a","b","c"])df A B Ca NaN 4 NaNb 3.0 5 7.0c NaN 6 8.0 ```

## Solution - single column case

To get rows with missing values in column `C`:

``` df[df["C"].isna()] A B Ca NaN 4 NaN ```

### Explanation

We first fetch column `C` as a `Series`:

``` df["C"] a NaNb 7.0c 8.0Name: C, dtype: float64 ```

We then use the `isna()` method, which returns a `Series` of booleans where `True` indicates the presence of a missing value:

``` df["C"].isna() a Trueb Falsec FalseName: C, dtype: bool ```

With this boolean mask, we can then extract rows that correspond to `True` using `[]` syntax:

``` df[df["C"].isna()] A B Ca NaN 4 NaN ```

## Solution - multiple columns case (OR)

Consider the same `df` as above:

``` df = pd.DataFrame({"A":[np.nan,3,np.nan],"B":[4,5,6],"C":[np.nan,7,8]}, index=["a","b","c"])df A B Ca NaN 4 NaNb 3.0 5 7.0c NaN 6 8.0 ```

To get rows with missing values in columns `A` or `C`:

``` df[df[["A","C"]].isna().any(axis=1)] A B Ca NaN 4 NaNc NaN 6 8.0 ```

### Explanation

We start off by extracting columns `A` and `C`:

``` df[["A","C"]] A Ca NaN NaNb 3.0 7.0c NaN 8.0 ```

We then use the `isna()` method, which returns a `Series` of booleans where `True` indicates the presence of a missing value:

``` df[["A","C"]].isna() A Ca True Trueb False Falsec True False ```

We then use `any(axis=1)` to obtain a `Series` where `True` represents the presence of at least one `True` in each row:

``` df[["A","C"]].isna().any(axis=1) a Trueb Falsec Truedtype: bool ```

The parameter `axis=1` is needed here since the default behaviour of `any(~)` is to scan through each column (as opposed to each row).

Finally, with this boolean mask, we can then extract rows that correspond to `True` using `[]` syntax:

``` df[df[["A","C"]].isna().any(axis=1)] A B Ca NaN 4 NaNc NaN 6 8.0 ```

## Solution - multiple columns case (AND)

The solution is identical to the `OR` case except that we use `all(axis=1)` instead of `any(~)`.

For instance, to find rows with missing values in both columns `A` and `C`:

``` df[df[["A","C"]].isna().all(axis=1)] A B Ca NaN 4 NaN ```

Here's a quick comparison between `all(~)` and `any(~)`:

• `all(~)` scans each row (when `axis=1`) and returns a `True` for that row if all its entires are `True`.

• `any(~)` scans each row (when `axis=1`) and returns a `True` for that row if at least one entry is `True`.