search
Search
Guest 0reps
Thanks for the thanks!
close
account_circle
Profile
exit_to_app
Sign out
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
Doc Search
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Shrink
Navigate to
A
A
brightness_medium
share
arrow_backShare

# Getting rows with missing values (NaNs) in certain columns in Pandas DataFrame

Programming
chevron_right
Python
chevron_right
Pandas
chevron_right
Cookbooks
chevron_right
DataFrame Cookbooks
chevron_right
Handling Missing Values
schedule Jul 1, 2022
Last updated
local_offer PythonPandas
Tags

# Example

Consider the following DataFrame:

df = pd.DataFrame({"A":[np.nan,3,np.nan],"B":[4,5,6],"C":[np.nan,7,8]}, index=["a","b","c"])
df
A B C
a NaN 4 NaN
b 3.0 5 7.0
c NaN 6 8.0

## Solution - single column case

To get rows with missing values in column C:

df[df["C"].isna()]
A B C
a NaN 4 NaN

### Explanation

We first fetch column C as a Series:

df["C"]
a NaN
b 7.0
c 8.0
Name: C, dtype: float64

We then use the isna() method, which returns a Series of booleans where True indicates the presence of a missing value:

df["C"].isna()
a True
b False
c False
Name: C, dtype: bool

With this boolean mask, we can then extract rows that correspond to True using [] syntax:

df[df["C"].isna()]
A B C
a NaN 4 NaN

## Solution - multiple columns case (OR)

Consider the same df as above:

df = pd.DataFrame({"A":[np.nan,3,np.nan],"B":[4,5,6],"C":[np.nan,7,8]}, index=["a","b","c"])
df
A B C
a NaN 4 NaN
b 3.0 5 7.0
c NaN 6 8.0

To get rows with missing values in columns A or C:

df[df[["A","C"]].isna().any(axis=1)]
A B C
a NaN 4 NaN
c NaN 6 8.0

### Explanation

We start off by extracting columns A and C:

df[["A","C"]]
A C
a NaN NaN
b 3.0 7.0
c NaN 8.0

We then use the isna() method, which returns a Series of booleans where True indicates the presence of a missing value:

df[["A","C"]].isna()
A C
a True True
b False False
c True False

We then use any(axis=1) to obtain a Series where True represents the presence of at least one True in each row:

df[["A","C"]].isna().any(axis=1)
a True
b False
c True
dtype: bool

The parameter axis=1 is needed here since the default behaviour of any(~) is to scan through each column (as opposed to each row).

Finally, with this boolean mask, we can then extract rows that correspond to True using [] syntax:

df[df[["A","C"]].isna().any(axis=1)]
A B C
a NaN 4 NaN
c NaN 6 8.0

## Solution - multiple columns case (AND)

The solution is identical to the OR case except that we use all(axis=1) instead of any(~).

For instance, to find rows with missing values in both columns A and C:

df[df[["A","C"]].isna().all(axis=1)]
A B C
a NaN 4 NaN

Here's a quick comparison between all(~) and any(~):

• all(~) scans each row (when axis=1) and returns a True for that row if all its entires are True.

• any(~) scans each row (when axis=1) and returns a True for that row if at least one entry is True.

mail
Edited by 0 others