search
Search
Join our weekly DS/ML newsletter layers DS/ML Guides
menu
menu search toc more_vert
Robocat
Guest 0reps
Thanks for the thanks!
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
help Ask a question
Share on Twitter
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
A
A
brightness_medium
share
arrow_backShare
Twitter
Facebook

Checking if a DataFrame contains any missing values in Pandas

Pandas
chevron_right
Cookbooks
chevron_right
DataFrame Cookbooks
chevron_right
Handling Missing Values
schedule Jul 1, 2022
Last updated
local_offer PythonPandas
Tags
tocTable of Contents
expand_more

Example

Consider the following DataFrame:

df = pd.DataFrame({"A":[np.nan,3], "B":[4,5]})
df
   A    B
0  NaN  4
1  3.0  5

Solution

To check if a DataFrame contains any missing values:

df.isna().any(axis=None)
True

Explanation

Here, isna() returns a DataFrame of booleans where True indicates a missing value:

df.isna()
   A      B
0  True   False
1  False  False

Finally, we use the DataFrame.any(~) method to check whether or not there are any True values in this DataFrame. The parameter axis=None indicates that we want to scan the entire DataFrame rather than to scan each row/column:

df.isna().any(axis=None)
True
mail
Join our newsletter for updates on new DS/ML comprehensive guides (spam-free)
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
Ask a question or leave a feedback...
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!