search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
check_circle
Mark as learned
thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment
auto_stories Bi-column layout
settings

Comprehensive Guide on Algebraic and Geometric Multiplicity

schedule Aug 12, 2023
Last updated
local_offer
Linear Algebra
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Definition.

Algebraic multiplicity

The algebraic multiplicity of an eigenvalue $\lambda$ is the number of times $\lambda$ appears as a root of the characteristic polynomiallink. We sometimes denote the algebraic multiplicity of $\lambda$ as $\mathrm{AM}(\lambda)$.

Example.

Finding the algebraic multiplicity (1)

Consider the following matrix:

$$\boldsymbol{A}= \begin{pmatrix} 5&2\\0&5 \end{pmatrix}$$

Find the algebraic multiplicity of every eigenvalue of $\boldsymbol{A}$.

Solution. The characteristic polynomial of $\boldsymbol{A}$ is:

$$\begin{align*} p_\boldsymbol{A}(\lambda)&= \det(\boldsymbol{A}-\lambda\boldsymbol{I}_2)\\ &= \begin{vmatrix} 5-\lambda&2\\0&5-\lambda \end{vmatrix}\\ &=(5-\lambda)(5-\lambda) \end{align*}$$

The eigenvalue $\lambda=5$ repeats twice so the algebraic multiplicity of $\lambda$ is $2$.

Example.

Finding the algebraic multiplicity (2)

Consider the following matrix:

$$\boldsymbol{A}= \begin{pmatrix} 3&1\\0&4 \end{pmatrix}$$

Find the algebraic multiplicity of every eigenvalue of $\boldsymbol{A}$.

Solution. The characteristic polynomial of $\boldsymbol{A}$ is:

$$\begin{align*} p_\boldsymbol{A}(\lambda)&= \det(\boldsymbol{A}-\lambda\boldsymbol{I}_2)\\ &= \begin{vmatrix} 3-\lambda&1\\0&4-\lambda \end{vmatrix}\\ &=(3-\lambda)(4-\lambda) \end{align*}$$

The eigenvalues of $\boldsymbol{A}$ are $\lambda_1=3$ and $\lambda_2=4$, and they both occur once. Therefore, the algebraic multiplicity of $\lambda_1$ is $1$ and that of $\lambda_2$ is also $1$.

Definition.

Geometric multiplicity

Let $\boldsymbol{A}$ be a square matrix. The geometric multiplicity of an eigenvalue $\lambda$ of $\boldsymbol{A}$ is the dimension of the eigenspace of $\lambda$. In other words, the geometric multiplicity is the nullitylink of $\boldsymbol{A}-\lambda\boldsymbol{I}$. We sometimes denote the geometric multiplicity of $\lambda$ as $\mathrm{GM}(\lambda)$.

Example.

Finding the geometric multiplicity

Consider the following matrix:

$$\boldsymbol{A}= \begin{pmatrix} 3&2\\0&4 \end{pmatrix}$$

Find the geometric multiplicity of every eigenvalue of $\boldsymbol{A}$.

Solution. The characteristic polynomial of $\boldsymbol{A}$ is:

$$\begin{align*} p_\boldsymbol{A}(\lambda)&= \det(\boldsymbol{A}-\lambda\boldsymbol{I}_2)\\ &= \begin{vmatrix} 3-\lambda&2\\0&4-\lambda \end{vmatrix}\\ &=(3-\lambda)(4-\lambda) \end{align*}$$

Therefore, the eigenvalues of $\boldsymbol{A}$ are $\lambda_1=3$ and $\lambda_2=4$. Let's now find the geometric multiplicity of $\lambda_1$ and $\lambda_2$.

The null spacelink of $\boldsymbol{A}-\lambda_1\boldsymbol{I}$ is the set of vectors $\boldsymbol{x}$ such that $(\boldsymbol{A}-\lambda_1\boldsymbol{I})\boldsymbol{x}=\boldsymbol{0}$. In matrix form, this is:

$$\begin{align*} \begin{pmatrix}3-\lambda_1&2\\0&4-\lambda_1\end{pmatrix} \begin{pmatrix}x_1\\x_2\end{pmatrix}&= \begin{pmatrix}0\\0\end{pmatrix}\\ \begin{pmatrix}3-3&2\\0&4-3\end{pmatrix} \begin{pmatrix}x_1\\x_2\end{pmatrix}&= \begin{pmatrix}0\\0\end{pmatrix}\\ \begin{pmatrix}0&2\\0&1\end{pmatrix} \begin{pmatrix}x_1\\x_2\end{pmatrix}&= \begin{pmatrix}0\\0\end{pmatrix}\\ \begin{pmatrix}0&1\\0&0\end{pmatrix} \begin{pmatrix}x_1\\x_2\end{pmatrix}&= \begin{pmatrix}0\\0\end{pmatrix} \end{align*}$$

We have that $x_1$ is a free variablelink and $x_2$ is a basic variablelink. Let $x_1=t$ where $t$ is some scalar. The solution of the homogeneous system is:

$$\begin{pmatrix} x_1\\x_2 \end{pmatrix}= \begin{pmatrix} t\\0 \end{pmatrix}= \begin{pmatrix} 1\\0 \end{pmatrix}t$$

Therefore, the basislink for the null space of $\boldsymbol{A}-\lambda_1\boldsymbol{I}$ is:

$$\left\{\begin{pmatrix}1\\0\end{pmatrix}\right\}$$

The nullity is the dimensionlink of the null space of $\boldsymbol{A}-\lambda_1\boldsymbol{I}$. In other words, the nullity is equal to the number of basis vectors for the null space of $\boldsymbol{A}-\lambda_1\boldsymbol{I}$. Since the basis of the null space consists of a single vector, we have that the nullity of $\boldsymbol{A}-\lambda_1\boldsymbol{I}$ is $1$. Therefore, the geometric multiplicity of $\lambda_1$ is $1$.

Similarly, let's now find the geometric multiplicity of $\lambda_2=4$. The matrix form of $\boldsymbol{A}-\lambda_2\boldsymbol{I}$ is:

$$\begin{align*} \begin{pmatrix}3-\lambda_2&2\\0&4-\lambda_2\end{pmatrix} \begin{pmatrix}x_1\\x_2\end{pmatrix}&= \begin{pmatrix}0\\0\end{pmatrix}\\ \begin{pmatrix}-1&2\\0&0\end{pmatrix} \begin{pmatrix}x_1\\x_2\end{pmatrix}&= \begin{pmatrix}0\\0\end{pmatrix} \end{align*}$$

Here, $x_1$ is a basic variable while $x_2$ is a free variable. Therefore, we let $x_2=t$ where $t\in\mathbb{R}$. The first row gives us:

$$\begin{align*} -x_1+2t&=0\\ x_1&=2t \end{align*}$$

Therefore, the solution of the homogenous system is:

$$\begin{pmatrix} x_1\\x_2 \end{pmatrix}= \begin{pmatrix} 2t\\t \end{pmatrix}= \begin{pmatrix} 2\\1 \end{pmatrix}t$$

Therefore, the basis for the null space of $\boldsymbol{A}-\lambda_2\boldsymbol{I}$ is:

$$\left\{\begin{pmatrix}2\\1\end{pmatrix}\right\}$$

Because the nullity of $\boldsymbol{A}-\lambda_2\boldsymbol{I}$ is $1$, the geometric multiplicity of $\lambda_2$ is $1$.

Example.

Finding algebraic and geometric multiplicity

Consider the following matrix:

$$\boldsymbol{A}= \begin{pmatrix} 5&0\\0&5 \end{pmatrix}$$

Find the algebraic and geometric multiplicity of every eigenvalue of $\boldsymbol{A}$.

Solution. The characteristic polynomial of $\boldsymbol{A}$ is:

$$\begin{align*} p_\boldsymbol{A}(\lambda)&= \det(\boldsymbol{A}-\lambda\boldsymbol{I})\\ &=\begin{vmatrix} 5-\lambda&0\\0&5-\lambda \end{vmatrix}\\ &=(5-\lambda)(5-\lambda)\\ \end{align*}$$

The eigenvalue of $\boldsymbol{A}$ is $\lambda=5$. Since $\lambda=5$ repeats twice, we have that the algebraic multiplicity of $\boldsymbol{A}$ is $2$. Let's now find the geometric multiplicity of $\lambda$. The matrix form of $\boldsymbol{A}-\lambda\boldsymbol{I}$ is:

$$\begin{align*} \begin{pmatrix}5-\lambda&0\\0&5-\lambda\end{pmatrix} \begin{pmatrix}x_1\\x_2\end{pmatrix}&= \begin{pmatrix}0\\0\end{pmatrix}\\ \begin{pmatrix}5-5&0\\0&5-5\end{pmatrix} \begin{pmatrix}x_1\\x_2\end{pmatrix}&= \begin{pmatrix}0\\0\end{pmatrix}\\ \begin{pmatrix}0&0\\0&0\end{pmatrix} \begin{pmatrix}x_1\\x_2\end{pmatrix}&= \begin{pmatrix}0\\0\end{pmatrix} \end{align*}$$

We have that $x_1$ and $x_2$ are both free variables. Let $x_1=r$ and $x_2=t$ where $r$ and $t$ are some scalars. The solution can be expressed as:

$$\boldsymbol{x}= \begin{pmatrix} r\\t \end{pmatrix}= \begin{pmatrix} 1\\0 \end{pmatrix}r+ \begin{pmatrix} 0\\1 \end{pmatrix}t$$

The eigenspace $\mathcal{E}$ of $\lambda=5$ is:

$$\mathcal{E}=\left\{ \begin{pmatrix}1\\0 \end{pmatrix}r+ \begin{pmatrix}0\\1 \end{pmatrix}t \;|\;r,t\in\mathbb{R}\right\}$$

The basis $\mathcal{B}$ of $\mathcal{E}$ is:

$$\mathcal{B}=\left\{ \begin{pmatrix}1\\0 \end{pmatrix},\;\; \begin{pmatrix}0\\1 \end{pmatrix}\right\}$$

Since $\mathcal{B}$ has $2$ basis vectors, the geometric multiplicity of $\lambda$ is $2$. Let's summarize the results below:

Eigenvalue

Algebraic multiplicity

Geometric multiplicity

$\lambda=5$

$2$

$2$

We will later prove that the algebraic multiplicity is always at least as large as the geometric multiplicity.

Theorem.

Lower bound of the geometric multiplicity of an eigenvalue

Let $\boldsymbol{A}$ be an $n\times{n}$ matrix and $\lambda$ be an eigenvalue of $\boldsymbol{A}$. The geometric multiplicity of $\lambda$ is equal to or greater than $1$.

Proof. Recall the characteristic equationlink:

$$\det(\boldsymbol{A}-\lambda\boldsymbol{I})=0$$

By theoremlink, this means that the matrix $\boldsymbol{A}-\lambda\boldsymbol{I}$ is not invertiblelink. By theoremlink, we have that the homogeneous system $(\boldsymbol{A}-\lambda\boldsymbol{I})\boldsymbol{x}=\boldsymbol{0}$ has at least one non-trivial solution $\boldsymbol{x}$. This means that the null space of $\boldsymbol{A}-\lambda\boldsymbol{I}$ contains at least one eigenvector for each eigenvalue $\lambda$.

By theoremlink, we know that scalar multiples of the eigenvector are also eigenvectors. Therefore, the eigenspace contains a set of all linear combinations of at least one eigenvector. We conclude that the eigenspace of every eigenvalue must have a dimension of at least $1$.

This completes the proof.

Theorem.

Upper bound of the algebraic multiplicity of an eigenvalue

Let $\boldsymbol{A}$ be an $n\times{n}$ matrix and $\lambda$ be an eigenvalue of $\boldsymbol{A}$. The algebraic multiplicity of $\lambda$ is a most $n$.

Proof. Let $\boldsymbol{A}$ be an $n\times{n}$ matrix. By theoremlink, we know that the degree of the characteristic polynomial of $\boldsymbol{A}$ is $n$. This means that an eigenvalue can occur as a root at most $n$ times. In other words, the algebraic multiplicity of an eigenvalue is at most $n$. This completes the proof.

Theorem.

Sum of algebraic multiplicities is equal to the size of the associated matrix

Let $\boldsymbol{A}$ be an $n\times{n}$ matrix. If $\lambda_1$, $\lambda_2$, $\cdots$, $\lambda_k$ are the eigenvalues of $\boldsymbol{A}$, then the sum of the corresponding algebraic multiplicities is equal to $n$, that is:

$$\mathrm{AM}(\lambda_1)+ \mathrm{AM}(\lambda_2)+ \cdots+ \mathrm{AM}(\lambda_k)= n$$

Proof. By theoremlink, if $\boldsymbol{A}$ is an $n\times{n}$ matrix, then the characteristic polynomial of $\boldsymbol{A}$ will have degree $n$. A polynomial with degree $n$ has exactly $n$ roots (including duplicates). Since the roots of the characteristic polynomial correspond to the eigenvalues of $\boldsymbol{A}$, we conclude that the sum of the algebraic multiplicities of the eigenvalues must be equal to $n$. This completes the proof.

Theorem.

Sum of geometric multiplicities of a square matrix with linearly independent columns is greater than its size

Let $\boldsymbol{A}$ be an $n\times{n}$ matrix with $n$ linearly independent eigenvectors. If $\lambda_1$, $\lambda_2$, $\cdots$, $\lambda_k$ are the eigenvalues of $\boldsymbol{A}$, then the sum of the corresponding geometric multiplicities is equal to or greater than $n$, that is:

$$\mathrm{GM}(\lambda_1)+ \mathrm{GM}(\lambda_2)+ \cdots+ \mathrm{GM}(\lambda_k)\ge n$$

Note that this is only an intermediate result and we will later prove that the $\ge$ can be replaced with an equality.

Proof. Suppose $\boldsymbol{A}$ has the following $n$ linearly independent eigenvectors:

$$\begin{equation}\label{eq:lwwwN9VKQ6EzRnoSxiM} \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \cdots, \boldsymbol{v}_n \} \end{equation}$$

However, some of these eigenvectors may be associated with the same eigenvalue. For instance, suppose $\boldsymbol{v}_1$ and $\boldsymbol{v}_2$ are associated with the same eigenvalue $\lambda=4$. Since $\boldsymbol{v}_1$ and $\boldsymbol{v}_2$ are linearly independent, the number of basis vectors for the eigenspacelink of $\lambda=4$ must be at least $2$. The reason we say "at least" here is that the number of basis vectors for $\lambda=4$ may potentially be greater than $2$. For instance, consider the following case:

$$\boldsymbol{v}_1= \begin{pmatrix}1\\0\\0\end{pmatrix},\;\;\;\;\; \boldsymbol{v}_2= \begin{pmatrix}0\\1\\0\end{pmatrix}$$

The eigenspace for the eigenvalue may be spanned by the following basis vectors:

$$\mathcal{B}_1=\left\{\begin{pmatrix}1\\0\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\end{pmatrix}, \begin{pmatrix}0\\0\\1\end{pmatrix}\right\}$$

Here, because there are $3$ basis vectors, the corresponding geometric multiplicity is $3$. Note that we will later show that such a case is impossible.

By repeatedly applying this logic to the rest of the eigenvectors in \eqref{eq:lwwwN9VKQ6EzRnoSxiM}, we conclude that the sum of geometric multiplicities is greater than or equal to $n$. This completes the proof.

Theorem.

Algebraic multiplicity is greater than or equal to the geometric multiplicity

Let $\boldsymbol{A}$ be a square matrix and $\lambda$ be an eigenvalue of $\boldsymbol{A}$. The algebraic multiplicity of $\lambda$ is greater than or equal to the geometric multiplicity of $\lambda$, that is:

$$\mathrm{AM}(\lambda)\ge \mathrm{GM}(\lambda)$$

Proof. Suppose we have an $n\times{n}$ matrix $\boldsymbol{A}$ and an invertible $n\times{n}$ matrix $\boldsymbol{P}$. By theoremlink, we know that similarlink matrices have the same characteristic polynomial:

$$\begin{equation}\label{eq:IHhrbeAVsRoFdBeXaWV} \det(\boldsymbol{A}-\lambda\boldsymbol{I}) = \det(\boldsymbol{P}^{-1}\boldsymbol{AP}-\lambda\boldsymbol{I}) \end{equation}$$

Our goal is to derive an expression for the right-hand side of \eqref{eq:IHhrbeAVsRoFdBeXaWV} that includes a term representing the geometric multiplicity of an eigenvalue $\lambda_i$.

To simplify notations, let $k$ denote the geometric multiplicity of eigenvalue $\lambda_i$ and let $\{\boldsymbol{x}_1,\boldsymbol{x}_2, \cdots,\boldsymbol{x}_k\}$ be the basis for the corresponding eigenspace $\mathcal{E}_i$. We define an $n\times{n}$ invertible matrix $\boldsymbol{P}$ whose first $k$ columns are these basis vectors:

$$\boldsymbol{P}= \begin{pmatrix} \vert&\vert&\cdots&\vert&\vert&\cdots&\vert\\ \boldsymbol{x}_1&\boldsymbol{x}_2& \cdots&\boldsymbol{x}_k&\boldsymbol{x}_{k+1} &\cdots&\boldsymbol{x}_{n}\\ \vert&\vert&\cdots&\vert&\vert&\cdots&\vert\\ \end{pmatrix}$$

Note that there exists such an invertible matrix $\boldsymbol{P}$ because the first $k$ columns are linearly independent by definition of basis vectors. We can ensure $\boldsymbol{P}$ is invertible by coming up with a set of vectors $x_{k+1}$, $x_{k+2}$, $\cdots$, $x_{n}$ that is also linearly independent. By theoremlink, an $n\times{n}$ matrix with $n$ linearly independent columns is invertible. This guarantees the existence of an invertible matrix $\boldsymbol{P}$.

We now express $\boldsymbol{P}$ as a block matrixlink:

$$\boldsymbol{P}= \begin{pmatrix} \boldsymbol{B}&\boldsymbol{C} \end{pmatrix}$$

Where:

  • $\boldsymbol{B}$ is an $n\times{k}$ sub-matrix whose columns are filled with the eigenbasis vectors.

  • $\boldsymbol{C}$ is an $n\times(n-k)$ sub-matrix whose columns are $\boldsymbol{x}_{k+1}$, $\boldsymbol{x}_{k+2}$, $\cdots$, $\boldsymbol{x}_{n}$.

Similarly, let's represent the inverse matrix $\boldsymbol{P}^{-1}$ using block format:

$$\boldsymbol{P}^{-1}= \begin{pmatrix} \boldsymbol{D}\\\boldsymbol{E} \end{pmatrix}$$

Where:

  • $\boldsymbol{D}$ is a $k\times{n}$ sub-matrix.

  • $\boldsymbol{E}$ is a $(n-k)\times{n}$ sub-matrix.

By theoremlink, the matrix product $\boldsymbol{P}^{-1}\boldsymbol{P}$ can be expressed as:

$$\boldsymbol{P}^{-1}\boldsymbol{P} = \begin{pmatrix} \boldsymbol{DB}&\boldsymbol{DC}\\ \boldsymbol{EB}&\boldsymbol{EC} \end{pmatrix}$$

Where:

  • $\boldsymbol{DB}$ is an $k\times{k}$ sub-matrix.

  • $\boldsymbol{DC}$ is an $k\times(n-k)$ sub-matrix

  • $\boldsymbol{EB}$ is an $(n-k)\times{k}$ sub-matrix.

  • $\boldsymbol{EC}$ is an $(n-k)\times(n-k)$ sub-matrix.

By definitionlink, a matrix multiplied by its inverse matrix is equal to the identity matrix, that is, $\boldsymbol{P}^{-1}\boldsymbol{P}=\boldsymbol{I}_n$. Therefore:

  • $\boldsymbol{DB}=\boldsymbol{I}_k$.

  • $\boldsymbol{EC}=\boldsymbol{I}_{n-k}$.

  • $\boldsymbol{DC}$ is an $k\times(n-k)$ sub-matrix whose entries are all zeroes.

  • $\boldsymbol{EB}$ is an $(n-k)\times{k}$ sub-matrix whose entries are all zeroes.

Now, consider $\boldsymbol{P}^{-1}\boldsymbol{AP}$. By theoremlink and theoremlink, $\boldsymbol{P}^{-1}\boldsymbol{AP}$ can be expressed as:

$$\begin{equation}\label{eq:jBeRUvHtoFRDerjz6Sl} \begin{aligned}[b] \boldsymbol{P}^{-1} \boldsymbol{A}\boldsymbol{P}&= \begin{pmatrix}\boldsymbol{D}\\\boldsymbol{E}\end{pmatrix}\boldsymbol{A} \begin{pmatrix}\boldsymbol{B}&\boldsymbol{C}\end{pmatrix}\\ &= \begin{pmatrix}\boldsymbol{DA}\\\boldsymbol{EA}\end{pmatrix} \begin{pmatrix}\boldsymbol{B}&\boldsymbol{C}\end{pmatrix}\\ &= \begin{pmatrix}\boldsymbol{DAB}&\boldsymbol{DAC}\\ \boldsymbol{EAB}&\boldsymbol{EAC}\end{pmatrix} \end{aligned} \end{equation}$$

Because $\lambda_i$ is an eigenvalue of $\boldsymbol{A}$ and $\boldsymbol{x}_i$ is a corresponding eigenvector, the following equation holds true by definition:

$$\begin{align*} \boldsymbol{A}\boldsymbol{x}_i &=\lambda_i\boldsymbol{x}_i \end{align*}$$

We now multiply both sides by $\boldsymbol{D}$. Note that this is possible because:

  • $\boldsymbol{D}$ has shape $k\times{n}$.

  • $\boldsymbol{A}$ has shape $n\times{n}$.

  • $\boldsymbol{x}_i$ has shape $n\times{1}$.

Some algebraic manipulation yields:

$$\begin{align*} \boldsymbol{DA}\boldsymbol{x}_i &=\boldsymbol{D}\lambda_i\boldsymbol{x}_i\\ \boldsymbol{DA}\boldsymbol{x}_i &=\lambda_i\boldsymbol{D}\boldsymbol{x}_i\\ \boldsymbol{DA}\boldsymbol{x}_i-\lambda_i\boldsymbol{D} \boldsymbol{x}_i &=\boldsymbol{0}\\ (\boldsymbol{DA}-\lambda_i\boldsymbol{D})\boldsymbol{x}_i &=\boldsymbol{0} \end{align*}$$

This means that:

$$\begin{align*} \boldsymbol{DA}-\lambda_i\boldsymbol{D}&=\boldsymbol{0}\\ \boldsymbol{DA}&=\lambda_i\boldsymbol{D}\\ \end{align*}$$

Similarly, we have that $\boldsymbol{EA}=\lambda_i\boldsymbol{E}$. Now we go back to \eqref{eq:jBeRUvHtoFRDerjz6Sl} and perform the following substitutions:

$$\begin{align*} \boldsymbol{P}^{-1} \boldsymbol{A}\boldsymbol{P} &= \begin{pmatrix}\boldsymbol{DAB}&\boldsymbol{DAC}\\ \boldsymbol{EAB}&\boldsymbol{EAC}\end{pmatrix}\\ &= \begin{pmatrix}\lambda_i\boldsymbol{DB}&\boldsymbol{DAC}\\ \lambda_i\boldsymbol{EB}&\boldsymbol{EAC}\end{pmatrix}\\ &= \begin{pmatrix}\lambda_i\boldsymbol{I}_k&\boldsymbol{DAC}\\ \boldsymbol{O}&\boldsymbol{EAC}\end{pmatrix} \end{align*}$$

Subtracting both sides by $\lambda\boldsymbol{I}$ where $\lambda$ is any eigenvalue of $\boldsymbol{A}$ yields:

$$\begin{align*} \boldsymbol{P}^{-1} \boldsymbol{A}\boldsymbol{P}-\lambda\boldsymbol{I} &= \begin{pmatrix}\lambda_i\boldsymbol{I}_k -\lambda\boldsymbol{I}_k &\boldsymbol{DAC}\\ \boldsymbol{O}&\boldsymbol{EAC}-\boldsymbol{I}_{n-k} \end{pmatrix}\\ &= \begin{pmatrix}(\lambda_i -\lambda)\boldsymbol{I}_k &\boldsymbol{DAC}\\ \boldsymbol{O}&\boldsymbol{EAC}-\boldsymbol{I}_{n-k} \end{pmatrix} \end{align*}$$

We now take the determinant of both sides. By theoremlink, we have that:

$$\det(\boldsymbol{P}^{-1}\boldsymbol{AP}-\lambda\boldsymbol{I})= \det\big((\lambda_i-\lambda)\boldsymbol{I}_k\big) \cdot\det\big(\boldsymbol{EAC}-\boldsymbol{I}_{n-k}\big)$$

Next, by theoremlink, we get:

$$\det(\boldsymbol{P}^{-1}\boldsymbol{AP}- \lambda\boldsymbol{I})= (\lambda_i-\lambda)^k \cdot\det\big(\boldsymbol{EAC}-\boldsymbol{I}_{n-k}\big)$$

We substitute this into \eqref{eq:IHhrbeAVsRoFdBeXaWV} to finally get:

$$\det(\boldsymbol{A}-\lambda\boldsymbol{I}) = (\lambda_i-\lambda)^k \cdot\det\big(\boldsymbol{EAC}-\boldsymbol{I}_{n-k}\big)$$

Because $(\lambda_i-\lambda)$ appears $k$ times, the algebraic multiplicity of $\lambda_i$ is at least $k$. This completes the proof.

Theorem.

Relationship between diagonalization, algebraic and geometric multiplicity

Let $\boldsymbol{A}$ be an $n\times{n}$ matrix. The following statements are equivalent:

  1. $\boldsymbol{A}$ is a diagonalizable matrixlink.

  2. the sum of the geometric multiplicities of the eigenvalues of $\boldsymbol{A}$ is equal to $n$.

  3. the geometric multiplicity and the algebraic multiplicity of every eigenvalue are equal.

Proof. We will prove $(1)\implies(2)\implies(3)\implies(1)$. We start by assuming $(1)$ that the $n\times{n}$ matrix $\boldsymbol{A}$ is diagonalizable. By theoremlink, since $\boldsymbol{A}$ is diagonalizable, $\boldsymbol{A}$ has $n$ linearly independentlink eigenvectors $\boldsymbol{v}_1$, $\boldsymbol{v}_2$, $\cdots$, $\boldsymbol{v}_n$.

Suppose $\boldsymbol{A}$ has $t$ distinct eigenvalues and let the corresponding geometric multiplicities be $k_1$, $k_2$, $\cdots$, $k_t$ and the algebraic multiplicities be $m_1$, $m_2$, $\cdots$, $m_t$.

By theoremlink, the sum of the geometric multiplicities must be greater than or equal to $n$, that is:

$$\begin{equation}\label{eq:TQhsAouxJRmwjztMdpm} k_1+k_2+\cdots+k_t\ge{n} \end{equation}$$

By theoremlink, the sum of the algebraic multiplicities is equal to $n$, that is:

$$\begin{equation}\label{eq:x90dgy3rmNu24WhyvLP} n=m_1+m_2+\cdots+m_t \end{equation}$$

Substituting \eqref{eq:x90dgy3rmNu24WhyvLP} into \eqref{eq:TQhsAouxJRmwjztMdpm} gives:

$$\begin{equation}\label{eq:oo3zHU2Uji1nxu4Z8Dl} k_1+k_2+\cdots+k_t\ge {m_1+m_2+\cdots+m_t} \end{equation}$$

Now, from theoremlink, we have that the algebraic multiplicity of an eigenvalue is greater than or equal to the geometric multiplicity of the same eigenvalue, that is:

$$\begin{equation}\label{eq:UShoHmbQS4jJcIj4U30} \begin{gathered} m_1\ge{k_1}\\ m_2\ge{k_2}\\ \vdots\\ m_t\ge{k_t}\\ \end{gathered} \end{equation}$$

Summing all of these inequalities gives:

$$\begin{equation}\label{eq:SoPWDF64YY5gRAlrCBa} m_1+m_2+\cdots+m_t\ge{k_1+k_2+\cdots+k_t} \end{equation}$$

Combining \eqref{eq:oo3zHU2Uji1nxu4Z8Dl} and \eqref{eq:SoPWDF64YY5gRAlrCBa} gives:

$$k_1+k_2+\cdots+k_t\;\;{\color{blue}\ge}\;\; m_1+m_2+\cdots+m_t\;\;{\color{blue}\ge}\;\;{k_1+k_2+\cdots+k_t}$$

This means that:

$$k_1+k_2+\cdots+k_t = m_1+m_2+\cdots+m_t$$

Combining with \eqref{eq:x90dgy3rmNu24WhyvLP} gives:

$$n=k_1+k_2+\cdots+k_t = m_1+m_2+\cdots+m_t$$

This proves $(1)\implies(2)$.

* * *

We now prove $(2)\implies(3)$. Assume the sum of the geometric multiplicities is $n$. By theoremlink, the sum of the algebraic multiplicities is $n$, which means:

$$\begin{equation}\label{eq:vCICCrzPdLZnYtErI9X} n=k_1+k_2+\cdots+k_t = m_1+m_2+\cdots+m_t \end{equation}$$

Again, by theoremlink, we have that:

$$\begin{equation}\label{eq:DRURNqiWpvCY2V0roHb} \begin{gathered} m_1\ge{k_1}\\ m_2\ge{k_2}\\ \vdots\\ m_t\ge{k_t}\\ \end{gathered} \end{equation}$$

Combining \eqref{eq:vCICCrzPdLZnYtErI9X} and \eqref{eq:DRURNqiWpvCY2V0roHb} implies:

$$\begin{gather*} m_1=k_1\\ m_2=k_2\\ \vdots\\ m_t=k_t \end{gather*}$$

This means that for every eigenvalue $\lambda_i$ for $i=1,2,\cdots,t$, the corresponding geometric multiplicity and algebraic multiplicity are equal. This proves $(2)\implies(3)$.

* * *

We now prove $(3)\implies(1)$. Suppose $\lambda_1$, $\lambda_2$, $\cdots$, $\lambda_t$ are distinct eigenvalues of an $n\times{n}$ matrix $\boldsymbol{A}$ where $t\le{n}$. Denote the corresponding eigenspace as $\mathcal{E}_1$, $\mathcal{E}_2$, $\cdots$, $\mathcal{E}_t$ and the corresponding basis as $\mathcal{B}_1$, $\mathcal{B}_2$, $\cdots$, $\mathcal{B}_t$ respectively.

We assume $(3)$ that the geometric multiplicity and algebraic multiplicity for every eigenvalue are equal. By theoremlink, because the sum of the algebraic multiplicities is equal to $n$, the sum of geometric multiplicities is also equal to $n$.

By theoremlink, because the basis $\mathcal{B}_1$, $\mathcal{B}_2$, $\cdots$, $\mathcal{B}_t$ correspond to distinct eigenvalues $\lambda_1$, $\lambda_2$, $\cdots$, $\lambda_t$, the union of the basis $\mathcal{B}_1\cup \mathcal{B}_2\cup \cdots\cup \mathcal{B}_t$ is linearly independent. This union can be expressed as:

$$\mathcal{B}_1\cup{\mathcal{B}_2}\cup\cdots\cup \mathcal{B}_t= \{\boldsymbol{w}_1,\boldsymbol{w}_2,\cdots,\boldsymbol{w}_n\}$$

Where $\boldsymbol{w}_i$ for $i=1,2,\cdots,n$ is a basis vector. The reason why the union contains $n$ vectors is that the sum of the geometric multiplicities is equal to $n$, which means that the total number of basis vectors when combined into a single set must be $n$.

We've now established that $\boldsymbol{A}$ has $n$ linearly independent eigenvectors. By theoremlink, we know that an $n\times{n}$ matrix with $n$ linearly independent eigenvectors is diagonalizable. Therefore, $\boldsymbol{A}$ is diagonalizable.

This completes the proof.

Example.

Showing that a matrix diagonalizable using algebraic and geometric multiplicity

Show that the following matrix is diagonalizable:

$$\boldsymbol{A}= \begin{pmatrix} 5&0\\0&5 \end{pmatrix}$$

Solution. We have shown in examplelink that:

Eigenvalue

Algebraic multiplicity

Geometric multiplicity

$\lambda=5$

$2$

$2$

By theorem, we can refer to either of the following fact to prove that $\boldsymbol{A}$ is diagonalizable:

  • the geometric multiplicity of the eigenvalue is n.

  • the algebraic multiplicity and the geometric multiplicity are equal.

robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...