search
Search
Unlock 100+ guides
search toc
close
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
Doc Search
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Shrink
Navigate to
near_me
Linear Algebra
54 guides
keyboard_arrow_down
check_circle
Mark as learned
thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment
auto_stories Bi-column layout
settings

# Symmetric matrices and their basic properties

schedule Aug 11, 2023
Last updated
local_offer
Linear Algebra
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Definition.

# Symmetric matrix

Matrix $\boldsymbol{A}$ is called symmetric if and only if $\boldsymbol{A}^T=\boldsymbol{A}$. This means that a matrix is symmetric if the matrix remains unchanged after flipping the rows and columns.

Example.

# Symmetric matrices

The following are examples of symmetric matrices:

$$\begin{pmatrix}1&3\\3&2\end{pmatrix} ,\;\;\;\;\;\;\; \begin{pmatrix} 1&2&3\\2&5&6\\3&6&9 \end{pmatrix},\;\;\;\;\;\;\; \begin{pmatrix} 2&0&0\\0&3&0\\0&0&0 \end{pmatrix}$$
Theorem.

# Symmetric matrices are square

If $\boldsymbol{A}$ is a symmetric matrix, then $\boldsymbol{A}$ is square.

Proof. Let $\boldsymbol{A}$ be an $m\times{n}$ matrix, which means that the shape of $\boldsymbol{A}^T$ is $n\times{m}$. By definition, if matrix $\boldsymbol{A}$ is symmetric, then $\boldsymbol{A}^T=\boldsymbol{A}$. For this equality to hold, the shapes of $\boldsymbol{A}^T$ and $\boldsymbol{A}$ must match, that is, $m=n$. This completes the proof.

Theorem.

# Sum of two symmetric matrices is symmetric

If $\boldsymbol{A}$ and $\boldsymbol{B}$ are symmetric matrices, then $\boldsymbol{A}+\boldsymbol{B}$ is also symmetric.

Proof. Let $\boldsymbol{A}$ and $\boldsymbol{B}$ be symmetric matrices. To show that $\boldsymbol{A}+\boldsymbol{B}$ is symmetric, we must show that the following holds:

$$(\boldsymbol{A}+\boldsymbol{B})^T =\boldsymbol{A}+\boldsymbol{B}$$

By the propertylink of transpose, we have that:

\begin{align*} (\boldsymbol{A}+\boldsymbol{B})^T &=\boldsymbol{A}^T+\boldsymbol{B}^T \end{align*}

Because $\boldsymbol{A}$ and $\boldsymbol{B}$ are symmetric, $\boldsymbol{A}^T=\boldsymbol{A}$ and $\boldsymbol{B}^T=\boldsymbol{B}$. Therefore, we end up with:

\begin{align*} (\boldsymbol{A}+\boldsymbol{B})^T &=\boldsymbol{A}+\boldsymbol{B} \end{align*}

This completes the proof.

Theorem.

# Scalar multiples of a symmetric matrix is also symmetric

If $\boldsymbol{A}$ is a symmetric matrix, then $k\boldsymbol{A}$ is also symmetric for any scalar $k$.

Proof. Let $\boldsymbol{A}$ be a symmetric matrix and $k$ be any scalar. By the propertylink of matrices, we have that:

\begin{align*} (k\boldsymbol{A})^T&= k\boldsymbol{A}^T\\ &=k\boldsymbol{A}\\ \end{align*}

By definition of symmetric matrices, $k\boldsymbol{A}$ is symmetric. This completes the proof.

Theorem.

# If A and B are symmetric, then AB+BA is symmetric

If $\boldsymbol{A}$ and $\boldsymbol{B}$ are symmetric matrices, then $\boldsymbol{AB}+\boldsymbol{BA}$ is a symmetric matrix.

Proof. The transpose of $\boldsymbol{AB}+\boldsymbol{BA}$ is:

\begin{align*} (\boldsymbol{AB}+\boldsymbol{BA})^T &=(\boldsymbol{AB})^T+(\boldsymbol{BA})^T\\ &=\boldsymbol{B}^T\boldsymbol{A}^T+ \boldsymbol{A}^T\boldsymbol{B}^T\\ &=\boldsymbol{B}\boldsymbol{A}+ \boldsymbol{A}\boldsymbol{B}\\ &=\boldsymbol{A}\boldsymbol{B}+ \boldsymbol{B}\boldsymbol{A} \end{align*}

Here:

By definition of symmetric matrices, we conclude that $\boldsymbol{AB}+\boldsymbol{BA}$ is symmetric. This completes the proof.

Theorem.

# Powers of symmetric matrices is also symmetric

If $\boldsymbol{A}$ is a symmetric matrix, then $\boldsymbol{A}^n$ is symmetric where $n$ is any positive integer.

Proof. The transpose of $\boldsymbol{A}^n$ is:

\begin{align*} (\boldsymbol{A}^n)^T &=(\boldsymbol{A}\boldsymbol{A}\cdots\boldsymbol{A})^T\\ &=\boldsymbol{A}^T\boldsymbol{A}^T\cdots\boldsymbol{A}^T\\ &=\boldsymbol{A}\boldsymbol{A}\cdots\boldsymbol{A}\\ &=\boldsymbol{A}^n \end{align*}

Here, we used theoremlink for the second equality. $\boldsymbol{A}^n$ is thus symmetric by definition. This completes the proof.

Theorem.

# Symmetric matrix is invertible if and only if its inverse is symmetric

Let $\boldsymbol{A}$ be a symmetric matrix. $\boldsymbol{A}$ is invertible if and only if $\boldsymbol{A}^{-1}$ is symmetric.

Proof. By propertylink of invertible matrices:

\begin{align*} (\boldsymbol{A}^{-1})^{T}&= (\boldsymbol{A}^{T})^{-1}\\ &= \boldsymbol{A}^{-1} \end{align*}

By definition, $\boldsymbol{A}^{-1}$ is therefore symmetric. The backward proposition also holds because every step is based on equality. This completes the proof.

Theorem.

# Product of symmetric matrices is commutative if and only if the product is symmetric

Let $\boldsymbol{A}$ and $\boldsymbol{B}$ be two symmetric matrices. $\boldsymbol{AB}=\boldsymbol{BA}$ if and only if $\boldsymbol{AB}$ is symmetric.

Proof. We will first prove the forward proposition. Assume $\boldsymbol{AB}=\boldsymbol{BA}$. The transpose of $\boldsymbol{AB}$ is:

\begin{align*} (\boldsymbol{AB})^T&= \boldsymbol{B}^T\boldsymbol{A}^T\\ &=\boldsymbol{B}\boldsymbol{A}\\ &=\boldsymbol{A}\boldsymbol{B} \end{align*}

By definition, $\boldsymbol{AB}$ is therefore symmetric.

Next we will prove the converse. Assume $\boldsymbol{AB}$ is symmetric. $\boldsymbol{AB}$ is:

\begin{align*} \boldsymbol{BA} &=\boldsymbol{B}^T\boldsymbol{A}^T\\ &=(\boldsymbol{A}\boldsymbol{B})^T\\ &=\boldsymbol{A}\boldsymbol{B} \end{align*}

This completes the proof.

Theorem.

# Symmetric matrices and dot products

An $n\times{n}$ matrix $\boldsymbol{A}$ is symmetric if and only if the following is true:

$$(\boldsymbol{Ax})\cdot \boldsymbol{y}= \boldsymbol{x}\cdot(\boldsymbol{Ay})$$

Where $\boldsymbol{x}$ and $\boldsymbol{y}$ are any vectors in $\mathbb{R}^n$.

Proof. We prove the forward proposition first. Suppose $\boldsymbol{A}$ is an $n\times{n}$ symmetric matrix. For any vectors $\boldsymbol{x},\boldsymbol{y}\in\mathbb{R}^n$, we have that:

\begin{align*} (\boldsymbol{Ax})\cdot{\boldsymbol{y}} &=(\boldsymbol{Ax})^T{\boldsymbol{y}}\\ &=\boldsymbol{x}^T\boldsymbol{A}^T{\boldsymbol{y}}\\ &=\boldsymbol{x}^T\boldsymbol{A}{\boldsymbol{y}}\\ &=\boldsymbol{x}\cdot(\boldsymbol{A}{\boldsymbol{y}})\\ \end{align*}

Note that the final step follows by theoremlink.

Now, let's prove the converse:

\begin{align*} (\boldsymbol{Ax})\cdot \boldsymbol{y}&= \boldsymbol{x}\cdot(\boldsymbol{Ay})\\ \boldsymbol{y}^T\boldsymbol{Ax} &=(\boldsymbol{Ay})^T\boldsymbol{x}\\ \boldsymbol{y}^T\boldsymbol{Ax}&= \boldsymbol{y}^T\boldsymbol{A}^T\boldsymbol{x}\\ \boldsymbol{y}^T\boldsymbol{Ax}- \boldsymbol{y}^T\boldsymbol{A}^T\boldsymbol{x}&=\boldsymbol{0}\\ \boldsymbol{y}^T(\boldsymbol{A}-\boldsymbol{A}^T)\boldsymbol{x}&=\boldsymbol{0} \end{align*}

Therefore $\boldsymbol{A}=\boldsymbol{A}^T$, which means $\boldsymbol{A}$ is symmetric. This completes the proof.

Theorem.

# Product of a matrix and its transpose is symmetric

If $\boldsymbol{A}$ is an $m\times{n}$ matrix, then $\boldsymbol{A}^T\boldsymbol{A}$ and $\boldsymbol{AA}^T$ are symmetric.

Proof. If $\boldsymbol{A}$ is an $m\times{n}$ matrix, then the shape of $\boldsymbol{A}^T$ is $n\times{m}$. Therefore, the shape of $\boldsymbol{A}^T\boldsymbol{A}$ is $m\times{m}$, which means $\boldsymbol{A}^T\boldsymbol{A}$ is square. Next, $\boldsymbol{A}^T\boldsymbol{A}$ can be written as:

\begin{align*} (\boldsymbol{A}^T\boldsymbol{A})^T&= \boldsymbol{A}^T(\boldsymbol{A}^T)^T\\ &=\boldsymbol{A}^T\boldsymbol{A} \end{align*}

Here, the first equality holds by propertylink of transpose. Since the transpose of $\boldsymbol{A}^T\boldsymbol{A}$ is itself, $\boldsymbol{A}^T\boldsymbol{A}$ is symmetric by definitionlink. Similarly, we can easily show that $\boldsymbol{AA}^T$ is symmetric:

\begin{align*} (\boldsymbol{A}\boldsymbol{A}^T)^T&= (\boldsymbol{A}^T)^T\boldsymbol{A}^T\\ &=\boldsymbol{A}\boldsymbol{A}^T \end{align*}

By definitionlink, $\boldsymbol{AA}^T$ is symmetric. This completes the proof.

Edited by 0 others
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!