search
Search
Login
Map of Data Science
menu
menu
search toc
Thanks for the thanks!
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to

Guide on Similar Matrices in Linear Algebra

schedule Mar 5, 2023
Last updated
local_offer
Linear Algebra
Tags
map
Check out the interactive map of data science
Definition.

Similar matrices

Suppose $\boldsymbol{A}$ and $\boldsymbol{B}$ are $n\times{n}$ matrices. $\boldsymbol{A}$ is similar to $\boldsymbol{B}$ if and only if there exists an $n\times{n}$ invertible matrix $\boldsymbol{P}$ such that:

$$\boldsymbol{A}= \boldsymbol{P}\boldsymbol{B}\boldsymbol{P}^{-1}$$

To indicate that $\boldsymbol{A}$ is similar to $\boldsymbol{B}$, we write $\boldsymbol{A}\sim\boldsymbol{B}$.

Example.

Checking that two matrices are similar

Consider the following matrices:

$$\boldsymbol{A}=\begin{pmatrix} -1&13\\0&4 \end{pmatrix},\;\;\;\;\; \boldsymbol{B}=\begin{pmatrix} 0&2\\2&3 \end{pmatrix},\;\;\;\;\; \boldsymbol{P}=\begin{pmatrix} 3&5\\1&2 \end{pmatrix}$$

Show that $\boldsymbol{A}$ is similar to $\boldsymbol{B}$ using $\boldsymbol{P}$.

Solution. To show that $\boldsymbol{A}$ is similar to $\boldsymbol{B}$, we must show that $\boldsymbol{A}=\boldsymbol{PBP}^{-1}$. The inverse of $\boldsymbol{P}$ is:

$$\begin{align*} \boldsymbol{P}^{-1} &=\frac{1}{(3)(2)-(5)(1)}\begin{pmatrix} 2&-5\\-1&3 \end{pmatrix}\\ &=\begin{pmatrix} 2&-5\\-1&3 \end{pmatrix} \end{align*}$$

Now, $\boldsymbol{PBP}^{-1}$ is:

$$\begin{align*} \boldsymbol{PB}\boldsymbol{P}^{-1}&= \begin{pmatrix}3&5\\1&2\end{pmatrix} \begin{pmatrix}0&2\\2&3\end{pmatrix} \begin{pmatrix}2&-5\\-1&3\end{pmatrix}\\ &=\begin{pmatrix}-1&13\\0&4\end{pmatrix}\\ &=\boldsymbol{A} \end{align*}$$

Therefore, $\boldsymbol{A}$ is similar to $\boldsymbol{B}$.

Theorem.

Equivalent definition of similar matrices

Matrix $\boldsymbol{A}$ is similar to matrix $\boldsymbol{B}$ if and only if there exists an invertible matrix $\boldsymbol{P}$ such that:

$$\boldsymbol{B}= \boldsymbol{P}^{-1}\boldsymbol{AP}$$

Proof. By definitionlink, if $\boldsymbol{A}$ is similar to $\boldsymbol{B}$, then there exists an invertible matrix $\boldsymbol{P}$ such that:

$$\boldsymbol{A} =\boldsymbol{P}\boldsymbol{B}\boldsymbol{P}^{-1}$$

Let's perform some matrix manipulation:

$$\begin{align*} \boldsymbol{A} &=\boldsymbol{P}\boldsymbol{B}\boldsymbol{P}^{-1}\\ \boldsymbol{AP}&=\boldsymbol{P}\boldsymbol{B}\\ \boldsymbol{P}^{-1}\boldsymbol{AP}&=\boldsymbol{B}\\ \end{align*}$$

This completes the proof.

Theorem.

Commutative property of matrix similarity

Let $\boldsymbol{A}$ and $\boldsymbol{B}$ be $n\times{n}$ matrices. $\boldsymbol{A}$ is similar to $\boldsymbol{B}$ if and only if $\boldsymbol{B}$ is similar to $\boldsymbol{A}$, that is:

$$\boldsymbol{A}\sim \boldsymbol{B} \;\;\;\;\;\Longleftrightarrow\;\;\;\;\; \boldsymbol{B}\sim \boldsymbol{A}$$

Since matrix similarity is commutative, we typically say "$\boldsymbol{A}$ and $\boldsymbol{B}$ are similar" instead of "$\boldsymbol{A}$ is similar to $\boldsymbol{B}$".

Proof. If $\boldsymbol{A}\sim\boldsymbol{B}$, then:

$$\boldsymbol{A}= \boldsymbol{P}\boldsymbol{B}\boldsymbol{P}^{-1}$$

By definition, we also have:

$$\boldsymbol{B}= \boldsymbol{P}^{-1}\boldsymbol{AP}$$

Now, let $\boldsymbol{R}=\boldsymbol{P}^{-1}$. This means that $\boldsymbol{R}^{-1}= \boldsymbol{P}$.

$$\boldsymbol{B}= \boldsymbol{R}\boldsymbol{A}\boldsymbol{R}^{-1}$$

By definitionlink, we conclude that $\boldsymbol{B}\sim\boldsymbol{A}$.

The converse can be proven by switching $\boldsymbol{A}$ and $\boldsymbol{B}$ and performing exactly the same steps. This completes the proof.

Theorem.

Reflexive property of similar matrices

Let $\boldsymbol{A}$ be a square matrix. $\boldsymbol{A}$ is similar to itself, that is $\boldsymbol{A}\sim\boldsymbol{A}$.

Proof. To show that $\boldsymbol{A}$ is similar to itself, we must show that there exists an invertible matrix $\boldsymbol{P}$ such that:

$$\begin{equation}\label{eq:FrZhzta0E5oT9P3cMNS} \boldsymbol{A}= \boldsymbol{P}\boldsymbol{A}\boldsymbol{P}^{-1} \end{equation}$$

Suppose $\boldsymbol{P}$ is the identity matrix, that is, $\boldsymbol{P}=\boldsymbol{I}$. This means that \eqref{eq:FrZhzta0E5oT9P3cMNS} becomes:

$$\begin{align*} \boldsymbol{A}&= \boldsymbol{I}\boldsymbol{A}\boldsymbol{I}^{-1}\\ &=\boldsymbol{I}\boldsymbol{A}\boldsymbol{I}\\ &=\boldsymbol{A} \end{align*}$$

This completes the proof.

Theorem.

Transitive property of similar matrices

If matrices $\boldsymbol{A}$ and $\boldsymbol{B}$ are similar and matrices $\boldsymbol{B}$ and $\boldsymbol{C}$ are similar, then $\boldsymbol{A}$ and $\boldsymbol{C}$ are similar, that is:

$$(\boldsymbol{A}\sim\boldsymbol{B} \;\;\text{and}\;\; \boldsymbol{B}\sim\boldsymbol{C}) \;\;\;\;{\color{blue}\implies}\;\;\;\; \boldsymbol{A}\sim\boldsymbol{C}$$

Proof. Since $\boldsymbol{A}\sim\boldsymbol{B}$ and $\boldsymbol{B}\sim\boldsymbol{C}$, there exists some invertible matrices $\boldsymbol{P}$ and $\boldsymbol{R}$ such that:

$$\begin{align*} \boldsymbol{A}&= \boldsymbol{P}\boldsymbol{B}\boldsymbol{P}^{-1}\\ \boldsymbol{B}&= \boldsymbol{R}\boldsymbol{C}\boldsymbol{R}^{-1}\\ \end{align*}$$

We substitute the second equation into the first equation to get:

$$\begin{align*} \boldsymbol{A}&= \boldsymbol{P} (\boldsymbol{R}\boldsymbol{C}\boldsymbol{R}^{-1}) \boldsymbol{P}^{-1}\\ &=(\boldsymbol{P} \boldsymbol{R})\boldsymbol{C}(\boldsymbol{R}^{-1} \boldsymbol{P}^{-1})\\ &=(\boldsymbol{P} \boldsymbol{R})\boldsymbol{C}(\boldsymbol{P} \boldsymbol{R})^{-1} \end{align*}$$

Here, the last step comes from theoremlink. If we let matrix $\boldsymbol{W}=\boldsymbol{PR}$, then:

$$\boldsymbol{A}= \boldsymbol{W}\boldsymbol{C}\boldsymbol{W}^{-1}$$

By definition, we conclude that $\boldsymbol{A}$ and $\boldsymbol{C}$ are similar.

Theorem.

Similar matrices have the same determinant

If $\boldsymbol{A}$ and $\boldsymbol{B}$ are similar $n\times{n}$ matrices, then $\boldsymbol{A}$ and $\boldsymbol{B}$ have the same determinant, that is:

$$\boldsymbol{A}\sim\boldsymbol{B} \;\;\;\;{\color{blue}\implies}\;\;\;\; \det(\boldsymbol{A})=\det(\boldsymbol{B})$$

Proof. Since $\boldsymbol{A}\sim\boldsymbol{B}$, we have that:

$$\boldsymbol{B}= \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}$$

Taking the determinant of both sides gives:

$$\det(\boldsymbol{B})= \det(\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P})$$

By the multiplicative propertylink of determinants, we have that:

$$\begin{equation}\label{eq:RM1WoFYIUlRiZMWJ4yA} \det(\boldsymbol{B})= \det(\boldsymbol{P}^{-1})\cdot \det(\boldsymbol{A})\cdot \det(\boldsymbol{P}) \end{equation}$$

Recall the following propertylink of determinants:

$$\det(\boldsymbol{P}^{-1})= \frac{1}{\det(\boldsymbol{P})}$$

Therefore, \eqref{eq:RM1WoFYIUlRiZMWJ4yA} is:

$$\begin{align*} \det(\boldsymbol{B})&= \frac{\det(\boldsymbol{A})\cdot \det(\boldsymbol{P})} {\det(\boldsymbol{P})}\\ &=\det(\boldsymbol{A}) \end{align*}$$

This completes the proof.

Theorem.

Similar matrices have the same rank

If $\boldsymbol{A}$ and $\boldsymbol{B}$ are similar $n\times{n}$ matrices, then $\boldsymbol{A}$ and $\boldsymbol{B}$ have the same rank, that is:

$$\boldsymbol{A}\sim\boldsymbol{B} \;\;\;\;{\color{blue}\implies}\;\;\;\; \mathrm{rank}(\boldsymbol{A})= \mathrm{rank}(\boldsymbol{B})$$

Proof. Since $\boldsymbol{A}\sim\boldsymbol{B}$, we have that:

$$\boldsymbol{B}= \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}$$

Where $\boldsymbol{P}$ is an invertible matrix. Taking the rank of both sides gives:

$$\begin{align*} \mathrm{rank}(\boldsymbol{B})&= \mathrm{rank}(\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P})\\ &= \mathrm{rank}\big((\boldsymbol{P}^{-1}\boldsymbol{A}) \boldsymbol{P}\big)\\ \end{align*}$$

By theoremlink, since $\boldsymbol{P}$ is invertible, we get:

$$\mathrm{rank}(\boldsymbol{B})= \mathrm{rank}\big(\boldsymbol{P}^{-1}\boldsymbol{A}\big)$$

Once again by theoremlink, since $\boldsymbol{P}^{-1}$ is invertible, we get:

$$\mathrm{rank}(\boldsymbol{B}) = \mathrm{rank}\big(\boldsymbol{A}\big)$$

This completes the proof.

Theorem.

Similar matrices have the same trace

If $\boldsymbol{A}$ and $\boldsymbol{B}$ are similar $n\times{n}$ matrices, then $\boldsymbol{A}$ and $\boldsymbol{B}$ have the same tracelink, that is:

$$\boldsymbol{A}\sim\boldsymbol{B} \;\;\;\;{\color{blue}\implies}\;\;\;\; \mathrm{tr}(\boldsymbol{A})= \mathrm{tr}(\boldsymbol{B})$$

Proof. Since $\boldsymbol{A}\sim\boldsymbol{B}$, we have that:

$$\boldsymbol{B}= \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}$$

Where $\boldsymbol{P}$ is an invertible matrix. Taking the trace of both sides gives:

$$\begin{align*} \mathrm{tr} (\boldsymbol{B})&= \mathrm{tr} (\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P})\\ &=\mathrm{tr} \big((\boldsymbol{P}^{-1} \boldsymbol{A}) \boldsymbol{P}\big)\\ \end{align*}$$

By theoremlink, we have that:

$$\begin{align*} \mathrm{tr} (\boldsymbol{B}) &=\mathrm{tr} \big((\boldsymbol{P}^{-1}\boldsymbol{A}) \boldsymbol{P}\big)\\ &=\mathrm{tr} \big((\boldsymbol{A}\boldsymbol{P}^{-1}) \boldsymbol{P}\big)\\ &=\mathrm{tr} (\boldsymbol{A}\boldsymbol{P}^{-1} \boldsymbol{P})\\ &=\mathrm{tr} (\boldsymbol{AI})\\ &=\mathrm{tr} (\boldsymbol{A})\\ \end{align*}$$

This completes the proof.

Theorem.

Similar matrices have the same characteristic polynomial

If $\boldsymbol{A}$ and $\boldsymbol{B}$ are similar $n\times{n}$ matrices, then $\boldsymbol{A}$ and $\boldsymbol{B}$ have the same characteristic polynomiallink.

Proof. Let $\boldsymbol{A}$ and $\boldsymbol{B}$ be square matrices of the same shape. Since $\boldsymbol{A}$ and $\boldsymbol{B}$ are similar, we have that:

$$\boldsymbol{B}= \boldsymbol{P}^{-1}\boldsymbol{AP}$$

Where $\boldsymbol{P}$ is an invertible matrix. The characteristic polynomial of $\boldsymbol{B}$ is:

$$\begin{align*} \det\big(\boldsymbol{B}-\lambda\boldsymbol{I}\big) &= \det\big(\boldsymbol{P}^{-1}\boldsymbol{AP}-\lambda\boldsymbol{I}\big)\\ &= \det\big(\boldsymbol{P}^{-1}\boldsymbol{AP}- \lambda\boldsymbol{I}(\boldsymbol{P}^{-1}\boldsymbol{P})\big)\\ &= \det\big(\boldsymbol{P}^{-1}\boldsymbol{AP}- \lambda\boldsymbol{I}\boldsymbol{P}^{-1}\boldsymbol{P}\big)\\ &= \det\big(\boldsymbol{P}^{-1}\boldsymbol{AP}- \lambda\boldsymbol{P}^{-1}\boldsymbol{I}\boldsymbol{P}\big)\\ &=\det\big(\boldsymbol{P}^{-1}(\boldsymbol{AP}- \lambda\boldsymbol{I}\boldsymbol{P})\big)\\ &=\det\big(\boldsymbol{P}^{-1}(\boldsymbol{A}- \lambda\boldsymbol{I})\boldsymbol{P}\big)\\ &=\det\big(\boldsymbol{P}^{-1}\big)\cdot\det\big(\boldsymbol{A}- \lambda\boldsymbol{I}\big)\cdot\det\big(\boldsymbol{P}\big)\\ &=\det\big(\boldsymbol{P}^{-1}\big) \cdot\det\big(\boldsymbol{P}\big) \cdot\det\big(\boldsymbol{A}- \lambda\boldsymbol{I}\big)\\ &=\det\big(\boldsymbol{P}^{-1}\boldsymbol{P}\big) \cdot\det\big(\boldsymbol{A}- \lambda\boldsymbol{I}\big)\\ &=\det\big(\boldsymbol{I}\big) \cdot\det\big(\boldsymbol{A}- \lambda\boldsymbol{I}\big)\\ &=\det\big(\boldsymbol{A}- \lambda\boldsymbol{I}\big)\\ \end{align*}$$

Here, we made use of the following theorems:

This completes the proof.

Theorem.

Similar matrices have the same eigenvalues

If $\boldsymbol{A}$ and $\boldsymbol{B}$ are similar matrices, then the eigenvalueslink of $\boldsymbol{A}$ and $\boldsymbol{B}$ are the same. In other words, if $\lambda_1$, $\lambda_2$, $\cdots$, $\lambda_k$ are the eigenvalues of $\boldsymbol{A}$, then $\boldsymbol{B}$ will also have eigenvalues $\lambda_1$, $\lambda_2$, $\cdots$, $\lambda_k$.

Proof. By theoremlink, if $\boldsymbol{A}$ and $\boldsymbol{B}$ are similar matrices, then they share the same characteristic polynomial. This immediately means that $\boldsymbol{A}$ and $\boldsymbol{B}$ have the same eigenvalues because eigenvalues are the roots of the characteristic polynomial. This completes the proof.

robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...