Pandas DataFrame | radd method
Start your free 7-days trial now!
Pandas DataFrame.radd(~) method computes and returns the sum of a scalar, sequence, Series or DataFrame and the values in the source DataFrame, that is:
        
        
            
                
                
                    other + DataFrame
                
            
            
        
    Note that this is the reverse of DataFrame.add(~), which does the following:
        
        
            
                
                
                    DataFrame + other
                
            
            
        
    Unless you use the parameters axis, level and fill_value, radd(~) is equivalent to performing addition using the + operator.
Parameters
1. otherlink | scalar or sequence or Series or DataFrame
The resulting DataFrame will be the sum of other and the source DataFrame.
2. axislink | int or string | optional
Whether to broadcast other for each column or row of the source DataFrame:
| Axis | Description | 
|---|---|
| 
 | 
 | 
| 
 | 
 | 
This is relevant only when the shape of the source DataFrame and other does not align. By default, axis=1.
3. level | int or string | optional
The name or the integer index of the level to consider. This is relevant only if your DataFrame is Multi-index.
4. fill_valuelink | float or None | optional
The value to replace NaN before the computing the sum. If both the pair-wise entries in the source DataFrame and other are NaN, then the resulting sum will still be NaN. By default, fill_value=None.
Return Value
A new DataFrame computed by the sum of the source DataFrame and other.
Examples
Basic usage
Consider the following DataFrames:
        
        
            
                
                
                    df = pd.DataFrame({"A":[2,3], "B":["a","b"]})df_other = pd.DataFrame({"A":[6,7], "B":["c","d"]})
                
            
               A  B   |     A  B0  2  a   |  0  6  c1  3  b   |  1  7  d
        
    Taking the sum yields:
        
        
            
                
                
                    df.radd(df_other)
                
            
               A   B0  8   ca1  10  db
        
    Broadcasting
Consider the following DataFrame:
        
        
            
                
                
                    df = pd.DataFrame({"A":[2,3], "B":[4,5]})df
                
            
               A  B0  2  41  3  5
        
    Row-wise addition
By default, axis=1, which means that other will be broadcasted for each row in df:
        
        
            
                
                
                    df.radd([10,20])   # axis=1
                
            
               A   B0  12  241  13  25
        
    Here, we're doing the following element-wise addition:
        
        
            
                
                
                    10+2  20+410+3  20+5
                
            
            
        
    Column-wise addition
To broadcast other for each column in df, set axis=0 like so:
        
        
            
                
                
                    df.radd([10,20], axis=0)
                
            
               A   B0  12  141  23  25
        
    Here, we're doing the following element-wise addition:
        
        
            
                
                
                    10+2  10+420+3  20+5
                
            
            
        
    Specifying fill_value
Consider the following DataFrames:
        
        
            
                
                
                    df = pd.DataFrame({"A":[2,np.NaN], "B":[np.NaN,5]})df_other = pd.DataFrame({"A":[10, 20],"B":[np.NaN,np.NaN]})
                
            
               A    B     |     A   B0  2    NaN   |  0  10  NaN1  NaN  5     |  1  20  NaN
        
    By default, when we take the sum using radd(~), any operation with NaN results in NaN:
        
        
            
                
                
                    df.radd(df_other)
                
            
               A    B0  2.0  NaN1  NaN  NaN
        
    We can fill the NaN values before we compute the sum by using the fill_value parameter:
        
        
            
                
                
                    df.radd(df_other, fill_value=100)
                
            
               A      B0  12.0   NaN1  120.0  105.0
        
    Notice when the addition is between two NaN, the resulting sum would still be a NaN regardless of fill_value.
