Pandas DataFrame | pow method
Start your free 7-days trial now!
Pandas DataFrame.pow(~) method computes the exponential power of the values in the source DataFrame and another scalar, sequence, Series or DataFrame, that is:
        
        
            
                
                
                    DataFrame ** other
                
            
            
        
    Unless you use the parameters axis, level and fill_value, pow(~) is equivalent to computing the exponential power using the ** operator.
Parameters
1. otherlink | scalar or sequence or Series or DataFrame
The resulting DataFrame will be the exponential power of the source DataFrame and other.
2. axislink | int or string | optional
Whether to broadcast other for each column or row of the source DataFrame:
| Axis | Description | 
|---|---|
| 
 | 
 | 
| 
 | 
 | 
This is only relevant if the shape of the source DataFrame does not match that of other. By default, axis=1.
3. level | int or string | optional
The name or the integer index of the level to consider. This is relevant only if your DataFrame is Multi-index.
4. fill_valuelink | float or None | optional
The value to replace NaN before computing the exponential power. If the computation involves two NaN, then the result would still be NaN. By default, fill_value=None.
Return Value
A new DataFrame computed by the exponential power of the source DataFrame and other.
Examples
Basic usage
Consider the following DataFrames:
        
        
            
                
                
                    df = pd.DataFrame({"A":[3,4], "B":[5,6]})df_other = pd.DataFrame({"A":[1,1], "B":[2,2]})
                
            
               A  B   |     A  B0  3  5   |  0  3  251  4  6   |  1  4  36
        
    Computing the exponential power of df and df_other:
        
        
            
                
                
                    df.pow(df_other)
                
            
               A  B0  3  251  4  36
        
    Here, we're computing the following element-wise exponential power:
        
        
            
                
                
                    3**1  5**24**1  6**2
                
            
            
        
    Broadcasting
Consider the following DataFrame:
        
        
            
                
                
                    df = pd.DataFrame({"A":[3,4], "B":[5,6]})df
                
            
               A  B   |     A  B0  3  5   |  0  3  251  4  6   |  1  4  36
        
    Row-wise
By default, axis=1, which means that other will be broadcasted for each row in df:
        
        
            
                
                
                    df.pow([1,2])   # axis=1
                
            
               A  B0  3  251  4  36
        
    Here, we're computing the following element-wise exponential power:
        
        
            
                
                
                    3**1  5**24**1  6**2
                
            
            
        
    Column-wise
To broadcast other for each column in df, set axis=0 like so:
        
        
            
                
                
                    df.pow([1,2], axis=0)
                
            
               A   B0  3   51  16  36
        
    Here, we're doing the following element-wise exponential power:
        
        
            
                
                
                    3**1  5**14**2  6**2
                
            
            
        
    Specifying fill_value
Consider the following DataFrames:
        
        
            
                
                
                    df = pd.DataFrame({"A":[2,np.NaN], "B":[np.NaN,3]})df_other = pd.DataFrame({"A":[4,5], "B":[np.NaN,np.NaN]})
                
            
               A    B     |     A  B0  2.0  NaN   |  0  4  NaN1  NaN  3.0   |  1  5  NaN
        
    By default, when we compute the power using pow(~), any operation with NaN results in NaN:
        
        
            
                
                
                    df.pow(df_other)
                
            
               A     B0  16.0  NaN1  NaN   NaN
        
    We can fill the NaN values before we compute the power by using the fill_value parameter:
        
        
            
                
                
                    df.pow(df_other, fill_value=1)
                
            
               A     B0  16.0  NaN1  1.0   3.0
        
    Here, notice when the operation is between two NaN, the result is still NaN regardless of fill_value.
