search
Search
Unlock 100+ guides
search toc
close
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
Doc Search
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Shrink
Navigate to
Pandas
655 guides
keyboard_arrow_down
check_circle
Mark as learned
thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment
auto_stories Bi-column layout
settings

# Pandas DataFrame | cumprod method

schedule Aug 11, 2023
Last updated
local_offer
PythonPandas
Tags
expand_more
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

Pandas `DataFrame.cumprod(~)` method computes the cumulative product along the row or column of the source DataFrame.

# Parameters

1. `axis`link | `int` or `string` | `optional`

Whether to compute the cumulative product along the row or the column:

Axis

Description

`0` or `"index"`

Compute the cumulative product of each column.

`1` or `"columns"`

Compute the cumulative product of each row.

By default, `axis=0`.

2. `skipna`link | `boolean` | `optional`

Whether or not to ignore `NaN`. By default, `skipna=True`.

# Return Value

A DataFrame holding the cumulative product of the row or column values.

# Examples

Consider the following DataFrame:

``` df = pd.DataFrame({"A":[3,4],"B":[5,6]})df    A  B0  3  51  4  6 ```

## Cumulative product of each column

To compute the cumulative product for each column:

``` df.cumprod()    A   B0  3   51  12  30 ```

## Cumulative product of each row

To compute the cumulative product for each row:

``` df.cumprod(axis=1)    A  B0  3  151  4  24 ```

## Dealing with missing values

Consider the following DataFrame with a missing value:

``` df = pd.DataFrame({"A":[3,pd.np.nan,5]})df A0 3.01 NaN2 5.0 ```

By default, `skipna=True`, which means that missing values are ignored:

``` df.cumprod()   # skipna=True A0 3.01 NaN2 15.0 ```

To take into account missing values:

``` df.cumprod(skipna=False) A0 3.01 NaN2 NaN ```

Here, notice how we end up with a `NaN` after the first `NaN`.

Edited by 0 others
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!