search
Search
Unlock 100+ guides
search toc
close
account_circle
Profile
exit_to_app
Sign out
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview Doc Search Code Search Beta SORRY NOTHING FOUND!
mic
Start speaking... Voice search is only supported in Safari and Chrome.
Shrink
Navigate to

# Guide on Spanning Set of a Vector Space

schedule Aug 11, 2023
Last updated
local_offer
Linear Algebra
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Definition.

# Spanning set of a vector space

Let $S=\{\boldsymbol{v}_1,\boldsymbol{v}_2,\cdots,\boldsymbol{v}_n\}$ be a subset of a vector space $V$. The set $S$ is called a spanning set of $V$ if every vector in $V$ can be written as a linear combinationlink of vectors in $S$. In such a case, we say that $S$ spans $V$.

Example.

# Checking if a vector is contained in a spanning set

Consider the following three vectors:

$$\boldsymbol{v}_1 = \begin{pmatrix} 2\\3 \end{pmatrix},\;\;\;\;\; \boldsymbol{v}_2=\begin{pmatrix} 1\\1 \end{pmatrix},\;\;\;\;\; \boldsymbol{v}_3=\begin{pmatrix} 4\\5 \end{pmatrix}$$

Show that $\boldsymbol{v}_3$ is contained in the vector space spanned by $\boldsymbol{v}_1$ and $\boldsymbol{v}_2$.

Solution. The spanning set of $\boldsymbol{v}_1$ and $\boldsymbol{v}_2$ holds all vectors that can be expressed as a linear combination of $\boldsymbol{v}_1$ and $\boldsymbol{v}_2$, that is:

$$\mathrm{span}(\boldsymbol{v}_1,\boldsymbol{v}_2)= \{c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2\;|\;c_1,c_2\in\mathbb{R}\}$$

To show that $\boldsymbol{v}_3$ is included in this spanning set, we must find scalars $c_1$ and $c_2$ such that:

$$\begin{equation}\label{eq:QSK03HjQ0KwAVv4bM5a} c_1\boldsymbol{v}_1+ c_2\boldsymbol{v}_2= \boldsymbol{v}_3\;\;\;\;\; \Longleftrightarrow\;\;\;\;\; c_1\begin{pmatrix} 2\\3\\ \end{pmatrix}+ c_2\begin{pmatrix} 1\\1\\ \end{pmatrix} = \begin{pmatrix} 4\\5\\ \end{pmatrix} \end{equation}$$

Rewriting the left-hand side as a matrix-vector product:

$$\begin{pmatrix} 2&1\\3&1\\ \end{pmatrix} \begin{pmatrix} c_1\\c_2\\ \end{pmatrix} = \begin{pmatrix} 4\\5\\ \end{pmatrix}$$

Let's use Gaussian elimination to solve for $c_1$ and $c_2$. We row-reduce the augmented matrix to obtain the reduced row echelon form:

$$\begin{pmatrix} 2&1&\color{blue}4\\3&1&\color{blue}5\\ \end{pmatrix}\sim \begin{pmatrix} 2&1&\color{blue}4\\-1&0&\color{blue}-1\\ \end{pmatrix}\sim \begin{pmatrix} 2&1&\color{blue}4\\1&0&\color{blue}1\\ \end{pmatrix}\sim \begin{pmatrix} 0&1&\color{blue}2\\1&0&\color{blue}1\\ \end{pmatrix} \sim \begin{pmatrix} 1&0&\color{blue}1\\0&1&\color{blue}2\\ \end{pmatrix}$$

We have the result that $c_1=1$ and $c_2=2$. Therefore, \eqref{eq:QSK03HjQ0KwAVv4bM5a} becomes:

$$\boldsymbol{v}_1+ 2\boldsymbol{v}_2= \boldsymbol{v}_3\;\;\;\;\; \Longleftrightarrow\;\;\;\;\; \begin{pmatrix} 2\\3\\ \end{pmatrix}+ 2\begin{pmatrix} 1\\1\\ \end{pmatrix} = \begin{pmatrix} 4\\5\\ \end{pmatrix}$$

Because we have managed to express $\boldsymbol{v}_3$ as a linear combination of $\boldsymbol{v}_1$ and $\boldsymbol{v}_2$, we conclude that $\boldsymbol{v}_3$ is included in the spanning set $\mathrm{span}(\boldsymbol{v}_1,\boldsymbol{v}_2)$.

Visually, $\boldsymbol{v}_3$ can be constructed by adding one $\boldsymbol{v}_1$ and two $\boldsymbol{v}_2$ like so: Example.

# Showing that vectors span a vector space

Consider the following vectors:

$$\boldsymbol{v}_1 = \begin{pmatrix} 2\\1 \end{pmatrix},\;\;\;\;\; \boldsymbol{v}_2=\begin{pmatrix} 1\\3 \end{pmatrix}$$

Show that these vectors span the vector space $\mathbb{R}^2$.

Solution. To show that these vectors span the vector space $\mathbb{R}^2$, we need to show that any vector in $\mathbb{R}^2$ can be expressed as a linear combination of $\boldsymbol{v}_1$ and $\boldsymbol{v}_2$. Let $\boldsymbol{b}$ be any vector in $\mathbb{R}^2$ defined like so:

$$\boldsymbol{b}= \begin{pmatrix} b_1\\b_2 \end{pmatrix}$$

We need to show that there exist scalar constants $c_1$ and $c_2$ such that:

$$\boldsymbol{b}= c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2 \;\;\;\;\;\Longleftrightarrow\;\;\;\;\; \begin{pmatrix} b_1\\b_2 \end{pmatrix}= c_1\begin{pmatrix} 2\\3 \end{pmatrix}+ c_2\begin{pmatrix} 1\\4 \end{pmatrix}$$

By theorem, the right-hand side can be expressed as a matrix-vector product:

$$\begin{pmatrix} b_1\\b_2 \end{pmatrix}= \begin{pmatrix} 2&3\\ 1&4\\ \end{pmatrix} \begin{pmatrix} c_1\\c_2 \end{pmatrix}$$

We know from theoremlink that we can check for the existence of a solution using the row echelon form of the coefficient matrix:

$$\begin{pmatrix} 2&3\\1&4\\ \end{pmatrix}\sim \begin{pmatrix} 1&3\\0&-5\\ \end{pmatrix}\sim \begin{pmatrix} 1&3\\0&1\\ \end{pmatrix}\sim \begin{pmatrix} 1&0\\0&1\\ \end{pmatrix}$$

Again by theoremlink, this means that $c_1$ and $c_2$ exist. Since any vector $\boldsymbol{b}$ in $\mathbb{R}^2$ can be expressed using a linear combination of $\boldsymbol{v}_1$ and $\boldsymbol{v}_2$, we conclude that the two vectors indeed span the vector space $\mathbb{R}^2$.

Example.

# Showing that vectors do not span a vector space

Consider the following two vectors:

$$\boldsymbol{v}_1 = \begin{pmatrix} 1\\2 \end{pmatrix},\;\;\;\;\; \boldsymbol{v}_2=\begin{pmatrix} 2\\4 \end{pmatrix}$$

Show that the vectors do not span $\mathbb{R}^2$.

Solution. Let $\boldsymbol{b}$ be any vector in $\mathbb{R}^2$. We check if there exists scalars $c_1$ and $c_2$ that can generate $\boldsymbol{b}$ like so:

$$\boldsymbol{b}= c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2 \;\;\;\;\;\Longleftrightarrow\;\;\;\;\; \begin{pmatrix} b_1\\b_2 \end{pmatrix}= \begin{pmatrix} 1&2\\ 2&4\\ \end{pmatrix} \begin{pmatrix} c_1\\c_2 \end{pmatrix}$$

The augmented matrix is:

$$\begin{pmatrix} 1&2&b_1\\2&4&b_2\\ \end{pmatrix}$$

For simplicity, we can ignore the right-most column and just acknowledge that its values will change as we perform elementary row operations:

$$\begin{pmatrix} 1&2&\color{blue}*\\2&4&\color{blue}*\\ \end{pmatrix}\sim \begin{pmatrix} 1&2&\color{blue}*\\1&2&\color{blue}*\\ \end{pmatrix}\sim \begin{pmatrix} 1&2&\color{blue}*\\0&0&\color{blue}*\\ \end{pmatrix}$$

Here, $\color{blue}*$ is some scalar value. If $\color{blue}*$ is non-zero, then a solution does not exist. Therefore, not every vector in $\mathbb{R}^2$ can be expressed as a linear combination of $\boldsymbol{v}_1$ and $\boldsymbol{v}_2$. In other words, the vectors do not span $\mathbb{R}^2$.

Example.

# Spanning set of a single vector

Consider the following vector:

$$\boldsymbol{v}= \begin{pmatrix} 2\\1 \end{pmatrix}$$

Find the vector space spanned by $\boldsymbol{v}$.

Solution. The spanning set of $\boldsymbol{v}$ is the set of all the linear combinations of $\boldsymbol{v}$. The linear combination of a single vector $\boldsymbol{v}$ is just the scalar multiple of $\boldsymbol{v}$, that is:

$$\mathrm{span}(\boldsymbol{v})=\{cv\;|\;c\in\mathbb{R}\}$$

We know that multiplying vectors by scalars results in either stretching/shrinking the vector without affecting its direction. Therefore, the spanning set of $\boldsymbol{v}$ is the set of all vectors that lie on the red line traced out by $\boldsymbol{v}$ like so: Examples of vectors that are contained in this spanning set are:

$$\begin{pmatrix} 4\\2 \end{pmatrix},\;\;\;\;\; \begin{pmatrix} -2\\-1 \end{pmatrix},\;\;\;\;\; \begin{pmatrix} 8\\4 \end{pmatrix}$$

Keep in mind that $\boldsymbol{v}$ does not span $\mathbb{R}^2$ because there exist many vectors in $\mathbb{R}^2$ that are not contained in the spanning set - for example:

$$\begin{pmatrix} 2\\2 \end{pmatrix},\;\;\;\;\; \begin{pmatrix} 2\\-1 \end{pmatrix},\;\;\;\;\; \begin{pmatrix} 4\\1 \end{pmatrix}$$
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!