search
Search
Login
Math ML Join our weekly DS/ML newsletter
menu
menu search toc more_vert
Robocat
Guest 0reps
Thanks for the thanks!
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
help Ask a question
Share on Twitter
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
A
A
brightness_medium
share
arrow_backShare
Twitter
Facebook

PySpark Column | otherwise method

Machine Learning
chevron_right
PySpark
chevron_right
Documentation
chevron_right
PySpark Column
schedule Jul 1, 2022
Last updated
local_offer PySpark
Tags
tocTable of Contents
expand_more

PySpark Column's otherwise(~) method is used after a when(~) method to implement an if-else logic. Click here for our documentation on when(~) method.

Parameters

1. value

The value to assign if the conditions set by when(~) are not satisfied.

Return Value

A PySpark Column (pyspark.sql.column.Column).

Examples

Basic usage

Consider the following PySpark DataFrame:

df = spark.createDataFrame([["Alex", 20], ["Bob", 24], ["Cathy", 22]], ["name", "age"])
df.show()
+-----+---+
| name|age|
+-----+---+
| Alex| 20|
| Bob| 24|
|Cathy| 22|
+-----+---+

To replace the name Alex with Doge, and others with Eric:

import pyspark.sql.functions as F
df.select(F.when(df.name == "Alex", "Doge").otherwise("Eric")).show()
+-----------------------------------------------+
|CASE WHEN (name = Alex) THEN Doge ELSE Eric END|
+-----------------------------------------------+
| Doge|
| Eric|
| Eric|
+-----------------------------------------------+

Note that we can replace our existing column with the new column like so:

df.name = F.when(df.name == "Alex", "Doge").otherwise("Eric")
df.show()
+----+---+
|name|age|
+----+---+
|Doge| 25|
|Eric| 30|
|Eric| 50|
+----+---+
mail
Join our newsletter for updates on new DS/ML comprehensive guides (spam-free)
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!